17 research outputs found

    Stable soft extrapolation of entire functions

    Full text link
    Soft extrapolation refers to the problem of recovering a function from its samples, multiplied by a fast-decaying window and perturbed by an additive noise, over an interval which is potentially larger than the essential support of the window. A core theoretical question is to provide bounds on the possible amount of extrapolation, depending on the sample perturbation level and the function prior. In this paper we consider soft extrapolation of entire functions of finite order and type (containing the class of bandlimited functions as a special case), multiplied by a super-exponentially decaying window (such as a Gaussian). We consider a weighted least-squares polynomial approximation with judiciously chosen number of terms and a number of samples which scales linearly with the degree of approximation. It is shown that this simple procedure provides stable recovery with an extrapolation factor which scales logarithmically with the perturbation level and is inversely proportional to the characteristic lengthscale of the function. The pointwise extrapolation error exhibits a H\"{o}lder-type continuity with an exponent derived from weighted potential theory, which changes from 1 near the available samples, to 0 when the extrapolation distance reaches the characteristic smoothness length scale of the function. The algorithm is asymptotically minimax, in the sense that there is essentially no better algorithm yielding meaningfully lower error over the same smoothness class. When viewed in the dual domain, the above problem corresponds to (stable) simultaneous de-convolution and super-resolution for objects of small space/time extent. Our results then show that the amount of achievable super-resolution is inversely proportional to the object size, and therefore can be significant for small objects

    Deep vs. shallow networks: An approximation theory perspective

    Get PDF
    The paper briefly reviews several recent results on hierarchical architectures for learning from examples, that may formally explain the conditions under which Deep Convolutional Neural Networks perform much better in function approximation problems than shallow, one-hidden layer architectures. The paper announces new results for a non-smooth activation function — the ReLU function — used in present-day neural networks, as well as for the Gaussian networks. We propose a new definition of relative dimension to encapsulate different notions of sparsity of a function class that can possibly be exploited by deep networks but not by shallow ones to drastically reduce the complexity required for approximation and learning

    Applications of classical approximation theory to periodic basis function networks and computational harmonic analysis

    Get PDF
    In this paper, we describe a novel approach to classical approximation theory of periodic univariate and multivariate functions by trigonometric polynomials. While classical wisdom holds that such approximation is too sensitive to the lack of smoothness of the target functions at isolated points, our constructions show how to overcome this problem. We describe applications to approximation by periodic basis function networks, and indicate further research in the direction of Jacobi expansion and approximation on the Euclidean sphere. While the paper is mainly intended to be a survey of our recent research in these directions, several results are proved for the first time here
    corecore